Canonical rings of stacky surfaces

Eran Assaf, Shiva Chidambaram, Sam Frengley, Sam Schiavone, Rachel Webb

January 2024

< □ > < @ > < 注 > < 注 > ... 注

The one ring

The canonical ring of a stack ${\mathscr X}$ is

Reasons for interest -

- X a curve, $g \ge 2 \implies \operatorname{Proj} R(X) \simeq X$. (Petri, 1923)
- X a variety $\implies \kappa(X) = \dim \operatorname{Proj} R(X)$.
- R(X) f.g. \implies Proj R(X) is a minimal model for X. (Birkar, Cascini, Hacon, McKernan 2010)
- Models of \mathscr{X} in weighted projective space.

¹By Peter J. Yost - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=98351026

Rings of power(s)

More generally, if \mathscr{F} is a sheaf on \mathscr{X} , can consider

$$R(\mathscr{X},\mathscr{F}) := \bigoplus_{d=0}^{\infty} H^0(\mathscr{X},\mathscr{F}^{\otimes d})$$

Important special case - Δ is NCD. and $\mathscr{F} = \omega_{\mathscr{X}}(\log \Delta)$.

- \mathscr{X} a modular curve, Δ the cusp divisor \implies $R(\mathscr{X}, \omega_{\mathscr{X}}(\log \Delta))$ graded ring of modular forms. (Voight, Zureick-Brown 2022)
- \mathscr{X} a smooth compactification of a moduli space with NCD boundary, Δ the boundary $\implies R(\mathscr{X}, \omega_{\mathscr{X}}(\log \Delta))$ graded ring of automorphic forms.
 - $\mathscr{X} = \mathscr{A}_g$ (PPAV) for Siegel modular forms.
 - \mathscr{X} classifies RMAV for Hilbert modular forms.

Birational invariant

When X is a variety, R(X) is a birational invariant.

We say that $f : \mathscr{X} \to \mathscr{Y}$ is strongly birational if the induced morphism $X \to Y$ is birational and

is a fiber square.

Proposition (A., Chidambram, Frengley, Schiavone, Webb) If $f : \mathscr{X} \to \mathscr{Y}$ is a strongly birational morphism of tame DM stacks with smooth projective coarse moduli, then the induced map of canonical rings is an isomorphism.

Stacky surfaces

A stacky surface \mathscr{X} over a field k is a smooth proper geom. connected DM stack of dimension 2 over k with an open subscheme $i: U \hookrightarrow \mathscr{X}$ such that $\dim(\mathscr{X} \setminus U) = 0$.

A log stacky surface (\mathscr{X}, Δ) is a stacky surface \mathscr{X} equipped with a NC divisor $\Delta \subseteq U$.

The signature of (\mathscr{X}, Δ) is

$$(h^{\bullet,\bullet}(X); (e_1; a_1, b_1), \ldots, (e_r; a_r, b_r); h^{\bullet}(\Delta)),$$

where $(e_i; a_i, b_i)$ are the orders and rotation types of the *r* stacky points, so that locally $(z_1, z_2) \mapsto (\zeta_{e_i}^{a_i} z_1, \zeta_{e_i}^{b_i} z_2)$.

Goal

Conjecture

Let (\mathscr{X}, Δ) be a tame log stacky surface over a perfect field k such that $K_{\mathscr{X}} + \Delta$ is ample. Let $e = \max(1, e_1, \ldots, e_r)$. Then $R(\mathscr{X}, \Delta)$ is generated in degree at most 5e with relations in degree at most 10e.

Conjecture

If $(K_{\mathscr{X}} + \Delta)^2 \geq 3$, $h^0(K_{\mathscr{X}} + \Delta) \geq 2$, $h^1(K_{\mathscr{X}} + \Delta) = 0$, and \mathscr{X} has an irreducible stacky curve $\mathscr{C} \in |K_{\mathscr{X}} + \Delta|$ then $R(\mathscr{X}, \Delta)$ is generated in degree at most 3e with relations in degree at most 6e.

Other than some special cases, expect degrees to depend only on the signature $\sigma.$

Start with X a variety, and proceed inductively. (Voight, Zureick-Brown 2022)

Background Main Conjectures Application

Handling codim 2 stacky points

3.5 3

Relation to \mathbb{Q} -divisors

Assume P is a stacky point of type (n; a, b), let

$$L = \{ (\lambda_1, \lambda_2) \in \mathbb{Z}^2 : \lambda_1 a + \lambda_2 b \equiv 0 \mod n \}$$

and let $\frac{1}{n}(l_i, m_i)$ be the boundary points of the positive cone in L^{\vee} .

Theorem (A., Chidambaram, Frengley, Schiavone, Webb)

There exist exceptional divisors E_i in $\widetilde{\mathscr{X}}$, pointwise fixed by μ_n such that

$$\pi^* \mathcal{K}_{\mathscr{X}} = f^* \mathcal{K}_{\widetilde{X}} + \sum_i (n - l_i - m_i) \mathcal{E}_i.$$

Example - diagonal action (n; 1, 1)

- $\widetilde{\mathbb{A}^2} = \mathsf{Bl}_0 \mathbb{A}^2$, with $(x, y), (s: t) \mapsto (\zeta_n x, \zeta_n y), (s: t)$.
- X is the cylinder based on E on which μ_n acts trivially.

RH for f + contraction $\pi \implies$

$$\pi^* K_{\mathscr{X}} + E = K_{\widetilde{\mathscr{X}}} = f^* K_{\widetilde{X}} + (n-1) \cdot E,$$

hence $\pi^* K_{\mathscr{X}} = f^* K_{\widetilde{X}} + (n-2) \cdot E$, so that

$$h^{0}(\mathscr{X}, dK_{\mathscr{X}}) = h^{0}\left(\widetilde{X}, dK_{\widetilde{X}} + \left\lfloor d\left(1 - \frac{2}{n}\right) \right\rfloor E\right).$$

Previous work

- Conjectures hold for X an algebraic surface (e = 1) with $\Delta = 0$. (Ciliberto 1983, Reid 1988)
- Section rings of Q-divisors on minimal rational surfaces (Landesman, Ruhm, Zhang 2018) are related via birational maps, using the previous theorem.
- Spin canonical rings of log stacky curves (Landesman, Ruhm, Zhang 2016) are related via the hyperplane section principle.

Spin canonical rings

Proposition (The hyperplane section principle - Reid, 1988)

Let R be a graded ring, $x_0 \in R_{a_0}$ regular $a_0 > 0$, $\overline{R} = R/(x_0)$. If $\overline{R} = k[x_1, \dots, x_n]/(f_1, \dots, f_n)$ then

$$R = k[x_0, x_1, \ldots, x_n]/(F_1, \ldots, F_n),$$

where F_i is such that deg $F_i = \text{deg } f_i$ and $F(0, x_1, \dots, x_n) = f(x_1, \dots, x_n)$.

Assume there is an irreducible stacky curve $\mathscr{C} \in |\mathcal{K}_{\mathscr{X}} + \Delta|$. Let $A = (\mathcal{K}_{\mathscr{X}} + \Delta)|_{\mathscr{C}}$. By adjunction

$$|\mathcal{K}_{\mathscr{C}} + \Delta|_{\mathscr{C}} = (\mathcal{K}_{\mathscr{X}} + \mathcal{O}_{\mathscr{X}}(\mathscr{C}) + \Delta)|_{\mathscr{C}} = 2(\mathcal{K}_{\mathscr{X}} + \Delta)|_{\mathscr{C}} = 2A,$$

so that A is a log spin-canonical divisor on \mathscr{C} .

Base case - log canonical rings

Theorem (A., Chidambaram, Frengley, Schiavone, Webb)

If X is regular, $K_X + \Delta$ is ample and $p_a(\Delta) = 1$, then $R(X, \Delta)$ is generated in degree at most 5 with relations in degree at most 10.

Proof. (Sketch)

The closed subscheme exact sequence for Δ yields

$$0
ightarrow O_X(-\Delta)
ightarrow O_X
ightarrow O_\Delta
ightarrow 0$$

twisting by $d(K_X + \Delta)$ leads to

$$0
ightarrow (d-1)(K_X+\Delta)+K_X
ightarrow d(K_X+\Delta)
ightarrow (K_X+\Delta)|_\Delta = K_\Delta
ightarrow 0.$$

from LES, using $K_X + \Delta$ ample (and X regular for d = 1) get

$$h^0(d(\mathcal{K}_X+\Delta))=\chi((d-1)(\mathcal{K}_X+\Delta)+\mathcal{K}_X)+h^0(d\mathcal{K}_\Delta)$$

Base case - log canonical rings

Proof. (Sketch).

Riemann-Roch and adjunction give

$$egin{aligned} &\chi((d-1)(\mathcal{K}_X+\Delta)+\mathcal{K}_X)\ &=\chi+rac{1}{2}d(d-1)(\mathcal{K}_X+\Delta)^2-(d-1)(p_{ extsf{aligned}}(\Delta)-1)-\delta_{d=1} \end{aligned}$$

When $p_a(\Delta) = 1$, then $K_{\Delta} = 0$, so if $h = h^0(\Delta)$, get

$$h^0(d(K_X+\Delta))=\chi+h-\delta_{d=1}+\frac{1}{2}d(d-1)(K_X+\Delta)^2.$$

Writing $g = \chi + h - 1$ and $c = (K_X + \Delta)^2$, get Hilbert series

 $\Phi(R;t) = (1+(g-3)t+(c-2(g-2))t^2+(g-3)t^3+t^4)(1-t)^{-3}$

+ the base-point-free pencil trick.

13/16

Induction step

Birational map $\mathscr{X} \to \mathscr{X}'$ where

$${\mathcal Q}\in {\mathscr X}\mapsto {\mathcal P}'\in {\mathscr X}'$$

with degree $e \geq 2$.

 $R = R(\mathscr{X}, \Delta)$ is an R'-algebra for $R' = R(\mathscr{X}', \Delta)$

Goal

Explicit description of generators and relations for R' over R.

Proposition

Assume Q is of type (e; 1, 1). For $3 \le i \le e$, a general choice of $y_i \in H^0(\mathscr{X}, i(K_{\mathscr{X}} + \Delta))$ minimally generates R as an R'-algebra.

Tools - Riemann-Roch, adjunction and ampleness of $K_{\mathscr{X}} + \Delta$. Issues - $K_{\mathscr{X}'} + \Delta$ might not be ample.

Application - Hilbert modular surfaces

Let *F* be a real quadratic field. Consider the moduli space \mathscr{Y}_F of abelian surfaces *A* with RM by \mathbb{Z}_F .

Theorem (Rapoport, 1978)

 \mathscr{Y}_{F} admits a compactification \mathscr{X}_{F} with boundary Δ such that (\mathscr{X}, Δ) is a log stacky surface. $R(\mathscr{X}, \Delta)$ is the graded ring of Hilbert modular forms of parallel even weight.

Moreover, we have $p_a(\Delta) = 1$ and

Theorem (Baily-Borel, 1966)

In the above setting, $K_{\mathscr{X}} + \Delta$ is ample.

Base case - Hilbert modular surfaces

Example

Let $F = \mathbb{Q}(\sqrt{5})$, and consider the moduli space $Y_{F,2}$ of abelian surfaces A with RM by \mathbb{Z}_F and a basis for A[2]. Then $X_{F,2}$ is a (non-stacky) surface.

One computes that $h^0(\Delta) = 5$, $(K_X + \Delta)^2 = 8$ and $\chi = 1$, so

$$\Phi(R;t) = \frac{1+2t+2t^2+2t^3+t^4}{(1-t)^3} = \frac{1-t^2-t^4+t^6}{(1-t)^5},$$

corresponding to

$$R(X, \Delta) = k[x_1, \ldots, x_5]/(f_2, f_4).$$

This matches an explicit description (van der Geer, 1980).